
BYCEPS

Jochen Kupperschmidt

Aug 01, 2022

CONTENTS

1 Concepts 3
1.1 Authorization . 3
1.2 Blueprints . 5
1.3 Scopes . 5
1.4 Signals . 7

2 Available Blueprints 9
2.1 Seating . 9

3 Installation 11
3.1 Requirements . 11
3.2 Install Debian Packages . 11
3.3 Obtain BYCEPS . 11
3.4 Set Up a Virtual Python Environment . 12
3.5 Create BYCEPS Configuration File . 12
3.6 Prepare PostgreSQL . 13
3.7 Populate Database . 14

4 Running BYCEPS 15
4.1 Admin Application . 15
4.2 Site Application . 15
4.3 Worker . 15

5 Upgrading 17
5.1 Python Packages . 17

6 License 19
6.1 License Text . 19

7 Indices and Tables 21

i

ii

BYCEPS

BYCEPS is the Bring-Your-Computer Event Processing System.

It is a tool to prepare and operate a LAN party, both online on the Internet and locally as an intranet system, for both
organizers and attendees.

The system incorporates both experience from more than 15 years of organizing LAN parties as well as concepts and
source code developed for more than a decade.

CONTENTS 1

BYCEPS

2 CONTENTS

CHAPTER

ONE

CONCEPTS

1.1 Authorization

User authorization in BYCEPS is based upon permissions and roles.

1.1.1 Structure

UserRolePermission

• A permission is a requirement to perform a specific action.

A permission can be part of one or more roles.

• A role is a set of permissions that can be granted to users.

Permissions can only be assigned to roles, but not directly to users. Roles are the links between permissions and
users.

Multiple roles may contain the same permission, but preferably shouldn’t (see example).

• A user can be assigned one or more roles through which the associated permissions are granted.

1.1.2 Rationale

This design was chosen because

1. it simplifies authorizing users to do predefined sets of actions by leveraging and combining existing roles

2. while making it easy to customize the permissions a user should have by simply adding specific roles with very
few permissions instead of having to copy and slightly adjust entire roles with dozens of permissions (as it would
be required in a system that only allows to assign a single role to a user).

3

BYCEPS

1.1.3 Example

This example demonstrates how board-related permissions can be grouped into roles. Those roles are then combined
per user to provide the permissions that should be granted.

Users
Roles

Permissions

Alice
Guest

Bob
Author

Eve
Moderator

View Topic

Create Topic

Update Topic

Hide Topic

As a result, the users have these roles and permissions:

User Roles Permissions
Alice

• Guest • View Topic

Bob
• Guest
• Author

• View Topic
• Create Topic
• Update Topic

Eve
• Guest
• Author
• Moderator

• View Topic
• Create Topic
• Update Topic
• Hide Topic

4 Chapter 1. Concepts

BYCEPS

1.2 Blueprints

BYCEPS is structured using Flask’s Blueprints.

A blueprint acts as a namespace and container for functionality of a certain topic.

It bundles:

• server-side code (Python, *.py),

• templates (Jinja, *.html),

• and static files, including:

– front-end styles (CSS, *.css)

– front-end behaviour (JavaScript, *.js)

– images (*.jpeg, *.png, etc.)

Blueprints should use their own database tables instead of extending or modifying existing ones.

Generally, blueprints should be self-contained. This should make it easy to add them to an application, and to disable
unwanted ones.

In order to add functionality to BYCEPS, developers are encouraged to wrap their extensions in a blueprint. This makes
it easier to keep the base system updated without having to worry about conflicts with their additions. It also makes it
easier to distribute their extensions to other interested BYCEPS users.

1.2.1 Integration

To fulfill their purpose, blueprints will need to be integrated into the system one way or another.

A blueprint may build entirely upon the existing system, and just require a few URL references to be inserted in the
navigation or some templates of the base system.

If a blueprint should react on certain events, it can connect to the available signals.

1.3 Scopes

BYCEPS distinguishes four scopes:

• global

• brand

• party

• site

1.2. Blueprints 5

https://flask.palletsprojects.com/en/1.1.x/blueprints/

BYCEPS

global

brand

party

site

Each entity belongs to exactly one of these scopes.

1.3.1 Global

The global scope is the outermost one.

Entities that belong to the global scope include users, roles, permissions, user badges, brands, and optionally snippets.

1.3.2 Brand

A brand is the identity of a series of parties.

Each brand is part of the global scope.

Entities that belong to the brand scope include orga flags, terms of service versions, news channels, boards, parties,
and optionally snippets.

1.3.3 Party

The party scope is for entities that belong to a single party (and are not better situated in the site scope).

Each party belongs to a brand.

Entities that belong to the party scope include orga teams, shops, tickets, seating areas, and sites.

6 Chapter 1. Concepts

BYCEPS

1.3.4 Site

The site scope is the innermost one.

Each site belongs to a party.

Entities that can belong to the site scope include snippets.

1.4 Signals

BYCEPS makes use of signals (based on the Blinker package) to provide hooks for specific events.

For example, a signal is emitted every time

• a user account is created

• a topic in the board is created

• an order is placed in the shop

Besides representing the information that something happened, signals can (and usually do) contain relevant objects
as well.

To receive signals, handlers can be registered for those they are interested in.

Some specific knowledge is necessary to attach code to a specific signal and access its payload, though.

• to import it: the module and name of the signal

• to handle it: the types of the objects it contains, and the keyword argument names they can be accessed with

1.4.1 Example

As a simple example for learning purposes, here is the code to print a message to STDOUT (visible when manually
starting the application from the command line, e.g. for development and debugging).

from byceps.events.board import BoardTopicCreated
from byceps.signals.board import topic_created

@topic_created.connect
def celebrate_created_topic(sender, *, event: BoardTopicCreated = None) -> None:

print(f'A topic titled has been created: {event.url}')

More useful reactions include:

• announcing selected events via email, on IRC, or on social media sites

• creating/assigning a party ticket once the corresponding order has been paid

• running spam detection on new board topics and postings

1.4. Signals 7

https://pythonhosted.org/blinker/

BYCEPS

8 Chapter 1. Concepts

CHAPTER

TWO

AVAILABLE BLUEPRINTS

2.1 Seating

BYCEPS’ seating model was designed to be flexible enough to fit both small parties (say, less than a hundred seats in
a single hall) as well as big ones (like Northern LAN Convention – NorthCon – with around 3.500 seats).

2.1.1 Structure

Seating

Seat

Area Category

Party

Each seat references these two entities:

• An area represents the physical location of a group of seats.

• A category is meant to separate seats in different price ranges from each another.

Since a ticket is bound to a category, a user with a ticket from category X cannot reserve a seat that belongs to
category Y.

9

https://www.northcon.de/

BYCEPS

Each area and category belongs to a specific party since each seating setup often is party-specific (even if multiple
parties are held in the same location).

2.1.2 Example: Small Party

A small party may take place in a single room or hall, and no distinction is made between the seats in it. Thus, a single
area as well as a single category are sufficient, so every seat belongs to the same area and the same category.

Categories

Areas

Area 1

Regular80 ×
Regular

2.1.3 Example: Big Party

This is a setup for a party that is held in multiple halls and which offers seats in multiple price (and feature) ranges.

Categories

Areas

Area 1 Area 2 Area 3

VIPPremiumRegular

1200 ×
Regular

400 ×
Regular

150 ×
Premium

600 ×
Regular

250 ×
Premium

10 ×
VIP

10 Chapter 2. Available Blueprints

CHAPTER

THREE

INSTALLATION

3.1 Requirements

• Python 3.7 or higher

• PostgreSQL 11 or higher

• Redis 5.0 or higher

• Git (for downloading and updating BYCEPS, but not strictly for running it)

3.2 Install Debian Packages

Debian Linux is the recommended operating system to run BYCEPS on.

To install packages, become the root user (or prefix the following commands with sudo to obtain superuser permis-
sions):

$ su -

Update the list of packages before installing any:

aptitude update

On Debian “Bullseye” 11 or Debian “Buster” 10, install these packages:

aptitude install git postgresql python3 python3-dev python3-venv redis-server

Additional required packages should be suggested for installation by the package manager.

Refer to the Debian documentation for further details.

3.3 Obtain BYCEPS

Grab a copy of BYCEPS itself. For now, the best way probably is to clone the Git repository from GitHub:

$ git clone https://github.com/byceps/byceps.git

A new directory, byceps, should have been created.

This way, it should be easy to pull in future updates to BYCEPS using Git. (And there currently are no release tarballs
anyway.)

11

https://www.python.org/
https://www.postgresql.org/
https://redis.io/
https://git-scm.com/
https://www.debian.org/

BYCEPS

3.4 Set Up a Virtual Python Environment

The installation should happen in an isolated Python environment just for BYCEPS so that its requirements don’t clash
with different versions of the same libraries somewhere else in the system.

Python already comes with the necessary tools, namely virtualenv and pip.

Change into the BYCEPS path and create a virtual environment (named “venv”) there:

$ cd byceps
$ python3 -m venv venv

Activate it (but don’t change into its path):

$. ./venv/bin/activate

Note that the first dot is the dot command, followed by a relative file name (which is written as explicitly relative to the
current path, ./).

Whenever you want to activate the virtual environment, make sure to do that either in the path in which you have
created it using the above command, or adjust the path to reference it relatively (e.g. ../../venv/bin/activate) or
absolutely (e.g. /var/www/byceps/venv/bin/activate).

Make sure the correct version of Python is used:

(venv)$ python -V
Python 3.9.2

It’s probably a good idea to update pip to the current version:

(venv)$ pip install --upgrade pip

Install the Python depdendencies via pip:

(venv)$ pip install -r requirements.txt

Install BYCEPS in editable mode to make the byceps command as well as the package of the same name available:

(venv)$ pip install -e .

3.5 Create BYCEPS Configuration File

To run BYCEPS, a configuration file is required. Those usually reside in /config.

There are two examples, development-example.py and production-example.py, that you can use as a base for
your specific configuration.

For starters, create a copy of the development example file to adjust as we go along:

$ cp config/development-example.py config/development.py

12 Chapter 3. Installation

https://www.python.org/
https://www.python.org/
https://www.virtualenv.org/
https://pip.pypa.io/
https://en.wikipedia.org/wiki/Dot_(Unix)
https://pip.pypa.io/
https://pip.pypa.io/

BYCEPS

3.5.1 Set a Secret Key

A secret key is, among other things, required for login sessions. So let’s generate one in a cryptographically secure
way:

(venv)$ byceps generate-secret-key
3ac1c416bfacb82918d56720d1c3104fd96e8b8d4fbee42343ae7512a9ced293

Set this value in your configuration file so the line looks like this:

SECRET_KEY = '3ac1c416bfacb82918d56720d1c3104fd96e8b8d4fbee42343ae7512a9ced293'

Attention: Do not use the above key (or any other key you copied from anywhere). Generate your own secret key!

Attention: Do not use the same key for development and production environments. Generate separate secret keys!

3.6 Prepare PostgreSQL

There should already be a system user, likely postgres.

Become root:

$ su
<enter root password>

Switch to the postgres user:

su postgres

Create a database user named byceps:

postgres@host$ createuser --echo --pwprompt byceps

You should be prompted to enter a password. Do that.

In your BYCEPS configuration file, replace the example password in the value of SQLALCHEMY_DATABASE_URI with
the one you just entered.

Create a schema, also named byceps:

postgres@host$ createdb --encoding=UTF8 --template=template0 --owner byceps byceps

To run the tests (optional), a dedicated user and database have to be created:

postgres@host$ createuser --echo --pwprompt byceps_test
postgres@host$ createdb --encoding=UTF8 --template=template0 --owner byceps_test byceps_
→˓test

Connect to the database:

3.6. Prepare PostgreSQL 13

BYCEPS

$ psql

Load the pgcrypto extension (only necessary on PostgreSQL versions before 13):

postgres=# CREATE EXTENSION pgcrypto;

Ensure that the function gen_random_uuid() is available now:

postgres=# select gen_random_uuid();

Expected result (the actual UUID hopefully is different!):

gen_random_uuid

b30bd643-d592-44e2-a256-0e0e167ac762
(1 row)

3.7 Populate Database

Important: Before continuing, make sure that the virtual environment is set up and activated.

Create the tables in the database specified in the configuration file:

(venv)$ BYCEPS_CONFIG=../config/development.py byceps create-database-tables
Creating database tables ... done.

An initial set of authorization roles is provided as a TOML file. Import it into the database:

(venv)$ BYCEPS_CONFIG=../config/development.py byceps import-roles scripts/data/roles.
→˓toml
Imported 32 roles.

With the authorization data in place, create the initial user (which will get all available roles assigned):

(venv)$ BYCEPS_CONFIG=../config/development.py byceps create-superuser
Screen name: Flynn
Email address: flynn@flynns-arcade.net
Password:
Creating user "Flynn" ... done.
Enabling user "Flynn" ... done.
Assigning 33 roles to user "Flynn" ... done.

Those roles allow the user to log in to the admin backend and to access all administrative functionality.

14 Chapter 3. Installation

CHAPTER

FOUR

RUNNING BYCEPS

4.1 Admin Application

Important: Before continuing, make sure that the virtual environment is set up and activated.

To run the admin application with Flask’s (insecure!) development server for development purposes:

(venv)$ BYCEPS_CONFIG=../config/development.py APP_MODE=admin FLASK_ENV=development␣
→˓flask run --debugger --reload

The admin application should now be reachable at http://127.0.0.1:5000 (on Flask’s standard port).

4.2 Site Application

Important: Before continuing, make sure that the virtual environment is set up and activated.

To run a site application with Flask’s (insecure!) development server for development purposes on a different port (to
avoid conflicting with the admin application):

(venv)$ BYCEPS_CONFIG=../config/development.py APP_MODE=site SITE_ID=cozylan FLASK_
→˓ENV=development flask run --debugger --reload --port 5001

The application for site cozylan should now be reachable at http://127.0.0.1:5001.

For now, every site will need its own site application instance.

4.3 Worker

Important: Before continuing, make sure that the virtual environment is set up and activated.

The worker processes background jobs for the admin application and site applications.

To start it:

15

http://127.0.0.1:5000
http://127.0.0.1:5001

BYCEPS

(venv)$ BYCEPS_CONFIG=../config/development.py ./worker.py

It should start processing any jobs in the queue right away and will then wait for new jobs to be enqueued.

While technically multiple workers could be employed, a single one is usually sufficient.

16 Chapter 4. Running BYCEPS

CHAPTER

FIVE

UPGRADING

5.1 Python Packages

When updating BYCEPS to a newer version, the set of required Python packages may change (additions, version up-
grades/downgrades, removals).

Important: Before continuing, make sure that the virtual environment is set up and activated.

As with the installation, it’s probably a good idea to update pip to the current version:

(venv)$ pip install --upgrade pip

Then instruct pip to install the required Python depdendencies (again, the same way as during the installation):

(venv)$ pip install -r requirements.txt

This will install new but yet missing packages and upgrade/downgrade existing packages. It will not remove no longer
used packages, though, but that should not be an issue.

If you want to run the test suite and/or use development tools, update their requirements as well:

(venv)$ pip install -r requirements-dev.txt

17

https://pip.pypa.io/
https://pip.pypa.io/

BYCEPS

18 Chapter 5. Upgrading

CHAPTER

SIX

LICENSE

BYCEPS is released under the 3-clause BSD license, also known as “New BSD License”, “Modified BSD License”,
and “Revised BSD License”.

The license applies both to all of BYCEPS’ source code as well as its documentation.

6.1 License Text

Copyright (c) 2014-2022, Jochen Kupperschmidt

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

19

BYCEPS

20 Chapter 6. License

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

21

	Concepts
	Authorization
	Structure
	Rationale
	Example

	Blueprints
	Integration

	Scopes
	Global
	Brand
	Party
	Site

	Signals
	Example

	Available Blueprints
	Seating
	Structure
	Example: Small Party
	Example: Big Party

	Installation
	Requirements
	Install Debian Packages
	Obtain BYCEPS
	Set Up a Virtual Python Environment
	Create BYCEPS Configuration File
	Set a Secret Key

	Prepare PostgreSQL
	Populate Database

	Running BYCEPS
	Admin Application
	Site Application
	Worker

	Upgrading
	Python Packages

	License
	License Text

	Indices and Tables

