

    
      
          
            
  
Welcome to BYCEPS

BYCEPS is the Bring-Your-Computer Event Processing System.

It is a tool to prepare and operate a LAN party, both online on the
Internet and locally as an intranet system, for both organizers and
attendees.

This documentation should guide you to understand and set up BYCEPS.


	The BYCEPS website is located at https://byceps.nwsnet.de/.


	The source code (including the documentation sources) is available
free of charge on GitHub [https://github.com/byceps/byceps] and on
Sourcehut [https://git.sr.ht/~homeworkprod/byceps].


	If you have questions or suggestions, feel free to reach out on the
BYCEPS Discord server [https://discord.gg/HxXbBN554U].

[image: Join BYCEPS on Discord]

 [https://discord.gg/HxXbBN554U]

	If you happen to find an issue or even a bug, please report it on the
issue tracker at GitHub [https://github.com/byceps/byceps/issues].


	If it could be a severe, security-critical issue, prefer to contact
the project author directly.










	Concepts
	Authorization

	Blueprints

	Scopes

	Signals





	Available Blueprints
	Seating





	Installation (native)
	Requirements

	Install Debian Packages

	Obtain BYCEPS

	Set Up a Virtual Python Environment

	Create BYCEPS Configuration File

	Prepare PostgreSQL

	Populate Database





	Installation (Docker Compose)
	Obtain BYCEPS

	Docker Preparation

	Secret Key

	Database

	Initial User

	Hostname-to-Application Routing

	Start BYCEPS





	Running BYCEPS
	Admin Application

	Site Application

	Worker





	Upgrading
	Python Packages





	Configuration
	Supported Configuration Values





	Command-line Interface
	Create Database Tables

	Import Authorization Roles

	Export Authorization Roles

	Initialize Database

	Create Superuser

	Import Users

	Generate Secret Key

	Import Seats

	Run Interactive Shell





	Testing

	License
	License Text











Indices and Tables


	Index


	Module Index


	Search Page







            

          

      

      

    

  

    
      
          
            
  
Concepts



	Authorization
	Structure

	Rationale

	Example





	Blueprints
	Integration





	Scopes
	Global

	Brand

	Party

	Site





	Signals
	Example












            

          

      

      

    

  

    
      
          
            
  
Authorization

User authorization in BYCEPS is based upon permissions and roles.


Structure


[image: ../../_images/structure1.png]

Relations between entities




	A permission is a requirement to perform a specific action.

A permission can be part of one or more roles.



	A role is a set of permissions that can be granted to users.

Permissions can only be assigned to roles, but not directly to users.
Roles are the links between permissions and users.

Multiple roles may contain the same permission, but preferably
shouldn’t (see example).



	A user can be assigned one or more roles through which the
associated permissions are granted.






Rationale

This design was chosen because


	it simplifies authorizing users to do predefined sets of actions by
leveraging and combining existing roles


	while making it easy to customize the permissions a user should have
by simply adding specific roles with very few permissions instead of
having to copy and slightly adjust entire roles with dozens of
permissions (as it would be required in a system that only allows to
assign a single role to a user).






Example

This example demonstrates how board-related permissions can be grouped
into roles. Those roles are then combined per user to provide the
permissions that should be granted.


[image: ../../_images/example.png]

Example



As a result, the users have these roles and permissions:



	User

	Roles

	Permissions





	Alice

	Guest

	View Topic



	Bob

	Guest, Author

	View Topic, Create Topic, Update Topic



	Eve

	Guest, Author, Moderator

	View Topic, Create Topic, Update Topic, Hide Topic










            

          

      

      

    

  

    
      
          
            
  
Blueprints

BYCEPS is structured using Flask’s Blueprints [https://flask.palletsprojects.com/en/1.1.x/blueprints/].

A blueprint acts as a namespace and container for functionality of a
certain topic.

It bundles:


	server-side code (Python, *.py),


	templates (Jinja, *.html),


	and static files, including:


	front-end styles (CSS, *.css)


	front-end behaviour (JavaScript, *.js)


	images (*.jpeg, *.png, etc.)








Blueprints should use their own database tables instead of extending or
modifying existing ones.

Generally, blueprints should be self-contained. This should make it easy
to add them to an application, and to disable unwanted ones.

In order to add functionality to BYCEPS, developers are encouraged to
wrap their extensions in a blueprint. This makes it easier to keep the
base system updated without having to worry about conflicts with their
additions. It also makes it easier to distribute their extensions to
other interested BYCEPS users.


Integration

To fulfill their purpose, blueprints will need to be integrated into
the system one way or another.

A blueprint may build entirely upon the existing system, and just
require a few URL references to be inserted in the navigation or some
templates of the base system.

If a blueprint should react on certain events, it can connect to the
available signals.





            

          

      

      

    

  

    
      
          
            
  
Scopes

BYCEPS distinguishes four scopes:


	global


	brand


	party


	site





[image: ../../_images/scopes.png]

Nesting of scopes



Each entity belongs to exactly one of these scopes.


Global

The global scope is the outermost one.

Entities that belong to the global scope include:


	users


	roles and permissions


	user badges


	brands


	global snippets






Brand

A brand is the identity of a series of parties.

Each brand is part of the global scope.

Entities that belong to the brand scope include:


	email settings


	orga flags


	parties


	sites


	news channels


	boards


	brand-specific snippets


	terms of service versions






Party

The party scope is for entities that belong to a single party (and are
not better situated in the site scope).

Each party belongs to a brand.

Entities that belong to the party scope include:


	orga teams


	shops


	tickets


	seating areas






Site

The site scope is for entities and settings that belong to a specific
website.

Each site belongs to a brand.

Entities that belong to the site scope include:


	server name


	pages


	navigation


	site-specific snippets


	choice of


	news channels


	forum


	storefront


	party






	status of


	user registration


	user login












            

          

      

      

    

  

    
      
          
            
  
Signals

BYCEPS makes use of signals (based on the Blinker [https://pythonhosted.org/blinker/] package) to provide
hooks for specific events.

For example, a signal is emitted every time


	a user account is created


	a topic in the board is created


	an order is placed in the shop




Besides representing the information that something happened, signals
can (and usually do) contain relevant objects as well.

To receive signals, handlers can be registered for those they are
interested in.

Some specific knowledge is necessary to attach code to a specific
signal and access its payload, though.


	to import it: the module and name of the signal


	to handle it: the types of the objects it contains, and the keyword
argument names they can be accessed with





Example

As a simple example for learning purposes, here is the code to print a
message to STDOUT (visible when manually starting the application from
the command line, e.g. for development and debugging).

from byceps.events.board import BoardTopicCreatedEvent
from byceps.signals.board import topic_created

@topic_created.connect
def celebrate_created_topic(sender, *, event: BoardTopicCreatedEvent = None) -> None:
    print(f'A topic titled "{event.topic_title}" has been created: {event.url}')





More useful reactions include:


	announcing selected events via email, on IRC, or on social media sites


	creating/assigning a party ticket once the corresponding order has been paid


	running spam detection on new board topics and postings








            

          

      

      

    

  

    
      
          
            
  
Available Blueprints



	Seating
	Structure

	Example: Small Party

	Example: Big Party












            

          

      

      

    

  

    
      
          
            
  
Seating

BYCEPS’ seating model was designed to be flexible enough to fit both
small parties (say, less than a hundred
seats in a single hall) as well as big ones
(like Northern LAN Convention – NorthCon [https://www.northcon.de/] – with around 3.500 seats).


Structure


[image: ../../_images/structure.png]

Relations between entities



Each seat references these two entities:


	An area represents the physical location of a group of seats.


	A category is meant to separate seats in different price ranges
from each another.

Since a ticket is bound to a category, a user with a ticket from
category X cannot reserve a seat that belongs to category Y.





Each area and category belongs to a specific party since each seating
setup often is party-specific (even if multiple parties are held in the
same location).



Example: Small Party

A small party may take place in a single room or hall, and no
distinction is made between the seats in it. Thus, a single area as well
as a single category are sufficient, so every seat belongs to the same
area and the same category.


[image: ../../_images/example_small.png]

Small party example





Example: Big Party

This is a setup for a party that is held in multiple halls and which
offers seats in multiple price (and feature) ranges.


[image: ../../_images/example_big.png]

Big party example







            

          

      

      

    

  

    
      
          
            
  
Installation (native)

This section describes how to install BYCEPS directly on an operating
system.

Alternatively, BYCEPS can be run from Docker containers. See
installation with Docker Compose on
how to do that instead.



	Requirements

	Install Debian Packages

	Obtain BYCEPS

	Set Up a Virtual Python Environment

	Create BYCEPS Configuration File
	Set a Secret Key

	Specify SMTP Server





	Prepare PostgreSQL

	Populate Database








            

          

      

      

    

  

    
      
          
            
  
Requirements


	A (virtual) server to install BYCEPS on


	At least two subdomains (administration UI, one party website)


	An SMTP [https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol] server (to send emails)


	Software:


	Python [https://www.python.org/] 3.11 or higher


	PostgreSQL [https://www.postgresql.org/] 13 or higher (for data persistence)


	Redis [https://redis.io/] 5.0 or higher (for the background job queue)


	uWSGI [https://uwsgi-docs.readthedocs.io/], Gunicorn [https://gunicorn.org/], or Waitress [https://github.com/Pylons/waitress] (as WSGI [https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface] server)


	nginx [https://nginx.org/] (as reverse proxy [https://en.wikipedia.org/wiki/Reverse_proxy], to serve static files, for TLS [https://en.wikipedia.org/wiki/Transport_Layer_Security])


	Git [https://git-scm.com/] (for downloading and updating BYCEPS, but not strictly for running it)











            

          

      

      

    

  

    
      
          
            
  
Install Debian Packages

Debian Linux [https://www.debian.org/] is the recommended operating system to run BYCEPS on.

To install packages, become the root user (or prefix the following
commands with sudo to obtain superuser permissions):

$ su -





Update the list of packages before installing any:

# aptitude update





On Debian “Bullseye” 11 or Debian “Buster” 10, install these packages:

# aptitude install git nginx postgresql python3 python3-dev python3-venv redis-server





Additional required packages should be suggested for installation by
the package manager.

Refer to the Debian documentation for further details.




            

          

      

      

    

  

    
      
          
            
  
Obtain BYCEPS

Grab a copy of BYCEPS itself. For now, the best way probably is to
clone the Git repository from GitHub:

$ git clone https://github.com/byceps/byceps.git





A new directory, byceps, should have been created.

This way, it should be easy to pull in future updates to BYCEPS using
Git. (And there currently are no release tarballs anyway.)




            

          

      

      

    

  

    
      
          
            
  
Set Up a Virtual Python Environment

The installation should happen in an isolated Python [https://www.python.org/] environment just
for BYCEPS so that its requirements don’t clash with different versions
of the same libraries somewhere else in the system.

Python [https://www.python.org/] already comes with the necessary tools, namely virtualenv [https://www.virtualenv.org/] and
pip [https://pip.pypa.io/].

Change into the BYCEPS path and create a virtual environment (named
“venv”) there:

$ cd byceps
$ python3 -m venv venv





Activate it (but don’t change into its path):

$ . ./venv/bin/activate





Note that the first dot is the dot command [https://en.wikipedia.org/wiki/Dot_(Unix)], followed by a relative
file name (which is written as explicitly relative to the current path,
./).

Whenever you want to activate the virtual environment, make sure to do
that either in the path in which you have created it using the above
command, or adjust the path to reference it relatively (e.g.
../../venv/bin/activate) or absolutely (e.g.
/var/www/byceps/venv/bin/activate).

Make sure the correct version of Python is used:

(venv)$ python -V
Python 3.11.2





It’s probably a good idea to update pip [https://pip.pypa.io/] to the current version:

(venv)$ pip install --upgrade pip





Install the Python dependencies via pip [https://pip.pypa.io/]:

(venv)$ pip install -r requirements/core.txt





Install BYCEPS in editable mode to make the byceps command as well
as the package of the same name available:

(venv)$ pip install -e .








            

          

      

      

    

  

    
      
          
            
  
Create BYCEPS Configuration File

To run BYCEPS, a configuration file is required. Those usually reside in
/config.

There are two examples, development_example.toml and
production_example.toml, that you can use as a base for your
specific configuration.

For starters, create a copy of the development example file to adjust as
we go along:

$ cp config/development_example.toml config/development.toml






Set a Secret Key

A secret key is, among other things, required for login sessions. So
let’s generate one in a cryptographically secure way:

(venv)$ byceps generate-secret-key
3ac1c416bfacb82918d56720d1c3104fd96e8b8d4fbee42343ae7512a9ced293





Set this value in your configuration file so the line looks like this:

SECRET_KEY = "3ac1c416bfacb82918d56720d1c3104fd96e8b8d4fbee42343ae7512a9ced293"






Attention

Do not use the above key (or any other key you copied
from anywhere). Generate your own secret key!




Attention

Do not use the same key for development and
production environments. Generate separate secret keys!





Specify SMTP Server

BYCEPS needs to know of an SMTP server, or mail/message transport agent
(MTA), to forward outgoing emails to.

The default is to expect a local one on localhost and port 25
without authentication or encryption, like Sendmail [https://www.proofpoint.com/us/products/email-protection/open-source-email-solution] or Postfix [https://www.postfix.org/].

Another option is to use an external one (authentication and encryption
are important here!) with a configuration like this:

MAIL_HOST = "smtp.provider.example"
MAIL_PORT = 465
MAIL_USE_SSL = true
MAIL_USERNAME = "example-username"
MAIL_PASSWORD = "example-password"





See the available MAIL_* configuration properties.





            

          

      

      

    

  

    
      
          
            
  
Prepare PostgreSQL

There should already be a system user, likely postgres.

Become root:

$ su
<enter root password>





Switch to the postgres user:

# su postgres





Create a database user named byceps:

postgres@host$ createuser --echo --pwprompt byceps





You should be prompted to enter a password. Do that.

In your BYCEPS configuration file, replace
the example password in the value of SQLALCHEMY_DATABASE_URI with
the one you just entered.

Create a schema, also named byceps:

postgres@host$ createdb --encoding=UTF8 --template=template0 --owner byceps byceps





To run the tests (optional), a dedicated user and database have to be
created:

postgres@host$ createuser --echo --pwprompt byceps_test
postgres@host$ createdb --encoding=UTF8 --template=template0 --owner byceps_test byceps_test





Connect to the database:

$ psql








            

          

      

      

    

  

    
      
          
            
  
Populate Database


Important

Before continuing, make sure that the virtual
environment is set up and activated.



Initialize the database (details) specified
in the configuration file:

(venv)$ BYCEPS_CONFIG=../config/development.toml byceps initialize-database
Creating database tables ... done.
Importing roles ... done. Imported 35 roles, skipped 0 roles.
Adding language "en" ... done.
Adding language "de" ... done.





With the tables and the authorization data in place, create the initial
user (which will get all available roles assigned):

(venv)$ BYCEPS_CONFIG=../config/development.toml byceps create-superuser
Screen name: Flynn
Email address: flynn@flynns-arcade.net
Password:
Creating user "Flynn" ... done.
Enabling user "Flynn" ... done.
Assigning 35 roles to user "Flynn" ... done.





Those roles allow the user to log in to the admin backend and to access
all administrative functionality.




            

          

      

      

    

  

    
      
          
            
  
Installation (Docker Compose)

As an alternative to installing directly on a system, BYCEPS can be run from Docker [https://www.docker.com/] containers,
orchestrated by Docker compose [https://docs.docker.com/compose/].


Important

This guide assumes you are using Docker Compose V2. If
you are still using V1, replace docker compose with
docker-compose before running commands that include it.



Since there is no official Docker image for BYCEPS at this point, you
have to build one yourself.


Obtain BYCEPS

First, clone BYCEPS’ Git repository to your machine:

$ git clone https://github.com/byceps/byceps.git





A new directory, byceps, should have been created. cd into it.



Docker Preparation

Both a Dockerfile (to build a Docker image) and a compose.yml
(to run containers with Docker Compose) come with BYCEPS.

Create the services (build images, create volumes, etc.). This might
take a few minutes.

$ docker compose up --no-start







Secret Key

Then generate a secret key and put it in a file Docker Compose is
configured to pick up as a secret [https://docs.docker.com/compose/use-secrets/]:

$ docker compose run --rm byceps-apps byceps generate-secret-key > ./secret_key.txt







Database

Now create and initially populate the relational database structure:

$ docker compose run --rm byceps-apps byceps initialize-database







Initial User

With the tables and the authorization data in place, create the initial
user (which will get all available roles assigned):

$ docker compose run --rm byceps-apps byceps create-superuser
Screen name: Flynn
Email address: flynn@flynns-arcade.net
Password:
Creating user "Flynn" ... done.
Enabling user "Flynn" ... done.
Assigning 35 roles to user "Flynn" ... done.







Hostname-to-Application Routing

Since a single BYCEPS instance can provide the admin frontend, the API,
and one or more sites, a configuration file is required that defines
which hostname will be routed to which application.

Copy the included example configuration file:

$ cp config/apps_example.toml config/apps.toml






	For a local installation, you can go with the examplary hostnames
already defined in the example apps configuration file,
config/apps_example.toml, which are:


	admin.byceps.example for the admin UI


	api.byceps.example for the API


	cozylan.example for the CozyLAN demo site




To be able to access them, though, add these entries to your local
/etc/hosts file (or whatever the equivalent of your operating
system is):

127.0.0.1       admin.byceps.example
127.0.0.1       api.byceps.example
127.0.0.1       cozylan.example







	But if you are installing to a server, substitude above hostnames
in the config with ones that use actual, registered Internet domains.






Start BYCEPS

With that configured, spin up the application:

$ docker compose up





The admin frontend should now be available at
http://admin.byceps.example:8080/. Log in with the name of the initial
user you created before and the corresponding password.

The “CozyLAN” party site should be accessible at
http://cozylan.example:8080/. (If you logged in to the admin frontend
just before, you might be logged in already as the same user.)


Attention

For security reasons, BYCEPS only sends cookies back
after login over an HTTPS-secured connection by default.

It is expected that BYCEPS is run behind a reverse proxy that adds
TLS termination (e.g. nginx [https://nginx.org/] or Caddy [https://caddyserver.com/]; often with a certificate from
Let’s Encrypt [https://letsencrypt.org/]).

To be able to login without HTTPS using above links, you can
temporarily disable session cookie security by setting
SESSION_COOKIE_SECURE to false: In compose.yaml add
SESSION_COOKIE_SECURE: false on a separate, indented line to the
section x-byceps-base-env.







            

          

      

      

    

  

    
      
          
            
  
Running BYCEPS


Important

Before continuing, make sure that the virtual
environment is set up and activated.




Admin Application

To run the admin application with Flask’s (insecure!) development
server for development purposes:

(venv)$ BYCEPS_CONFIG=../config/development.toml flask --app=serve_admin --debug run





The admin application should now be reachable at
http://127.0.0.1:5000 (on Flask’s standard port).



Site Application

To run a site application with Flask’s (insecure!) development server
for development purposes on a different port (to avoid conflicting with
the admin application):

(venv)$ BYCEPS_CONFIG=../config/development.toml SITE_ID=cozylan flask --app=serve_site --debug run --port 5001





The application for site cozylan should now be reachable at
http://127.0.0.1:5001.

For now, every site will need its own site application instance.



Worker

The worker processes background jobs for the admin application and site
applications.

To start it:

(venv)$ BYCEPS_CONFIG=../config/development.toml ./worker.py





It should start processing any jobs in the queue right away and will
then wait for new jobs to be enqueued.

While technically multiple workers could be employed, a single one is
usually sufficient.





            

          

      

      

    

  

    
      
          
            
  
Upgrading



	Python Packages








            

          

      

      

    

  

    
      
          
            
  
Python Packages

When updating BYCEPS to a newer version, the set of required Python
packages may change (additions, version upgrades/downgrades, removals).


Important

Before continuing, make sure that the virtual
environment is set up and activated.



As with the installation, it’s probably a
good idea to update pip [https://pip.pypa.io/] to the current version:

(venv)$ pip install --upgrade pip





Then instruct pip [https://pip.pypa.io/] to install the required Python dependencies (again,
the same way as during the installation):

(venv)$ pip install -r requirements/core.txt





This will install new but yet missing packages and upgrade/downgrade
existing packages. It will not remove no longer used packages, though,
but that should not be an issue.

If you want to run the test suite and/or use development tools, update
their requirements as well:

(venv)$ pip install -r requirements/dev.txt








            

          

      

      

    

  

    
      
          
            
  
Configuration

BYCEPS can be configured with a configuration file. Some values can also
be set as environment variables.


Supported Configuration Values


	
DEBUG

	Enable debug mode.

Default: False

Handled by Flask [https://github.com/pallets/flask].

Debug mode can also be enabled by appending the --debug option
to the flask command.






	
DEBUG_TOOLBAR_ENABLED

	Enable the debug toolbar (provided by Flask-DebugToolbar [https://github.com/pallets-eco/flask-debugtoolbar]).

Default: False






	
JOBS_ASYNC

	Makes jobs run asynchronously.

Can be disabled to run jobs synchronously, but that is likely only
useful for (and actually used for) testing.

Default: True






	
LOCALE

	Specifies the default locale.

Default: de (This will likely be changed to en at some point
in the future.)






	
MAIL_HOST

	The host of the SMTP server.

Default: 'localhost'






	
MAIL_PASSWORD

	The password to authenticate with against the SMTP server.

Default: None






	
MAIL_PORT

	The port of the SMTP server.

Default: 25






	
MAIL_STARTTLS

	Put the SMTP connection in TLS (Transport Layer Security) mode.

Default: False






	
MAIL_SUPPRESS_SEND

	Suppress sending of emails.

Default: False






	
MAIL_USE_SSL

	Use SSL for the connection to the SMTP server.

Default: False






	
MAIL_USERNAME

	The username to authenticate with against the SMTP server.

Default: None






	
METRICS_ENABLED

	Enable the Prometheus [https://prometheus.io/]-compatible metrics endpoint at /metrics/.

Only available on admin application.

Default: False






	
PATH_DATA

	Filesystem path for static files (including uploads).

Default: './data' (relative to the BYCEPS root path)






	
PROPAGATE_EXCEPTIONS

	Reraise exceptions instead of letting BYCEPS handle them.

This is useful if an external service like Sentry [https://sentry.io/] should handle
exceptions.

Default: None

If not set, this is implicitly true if DEBUG or TESTING is
enabled.

Handled by Flask [https://github.com/pallets/flask].






	
REDIS_URL

	The URL used to connect to Redis.

The format can be one of these:


	redis://[[username]:[password]]@localhost:6379/0 (TCP socket)


	rediss://[[username]:[password]]@localhost:6379/0 (SSL-wrapped
TCP socket)


	unix://[[username]:[password]]@/path/to/socket.sock?db=0 (Unix
domain socket)




To use the first database of a Redis instance running on localhost
on its default port: redis://127.0.0.1:6379/0

The documentation for Redis.from_url provides details on
supported URL schemes and examples [https://redis.readthedocs.io/en/stable/connections.html#redis.Redis.from_url].






	
SECRET_KEY

	A secret key that will be for security features such as signing
session cookies.

Should be a long, random string.

BYCEPS provides a command-line tool to securely generate a
secret key.






	
SESSION_COOKIE_SECURE

	Only send cookies marked as secure when an HTTPS connection is
available.

Logging in will fail if this is set to true and BYCEPS is accessed
without TLS.

This behavior can be disabled for development purposes without a
TLS-terminating frontend to the BYCEPS application.

Default: True (set by BYCEPS; Flask’s default [https://flask.palletsprojects.com/en/2.2.x/config/#SESSION_COOKIE_SECURE]
is False)






	
SHOP_ORDER_EXPORT_TIMEZONE

	The timezone used for shop order exports.

Default: 'Europe/Berlin'






	
SQLALCHEMY_DATABASE_URI

	The URL used to connect to the relational database (i.e. PostgreSQL).

Format:

postgresql+psycopg://USERNAME:PASSWORD@HOST/DATABASE





Example (use user byceps with password hunter2 to connect to
database byceps on the local host):

postgresql+psycopg://byceps:hunter2@127.0.0.1/byceps





Since BYCEPS uses psycopg [https://www.psycopg.org/] by default, the scheme has to be
postgresql+psycopg.

For more info, see Flask-SQLAlchemy’s documentation on
SQLALCHEMY_DATABASE_URI [https://flask-sqlalchemy.palletsprojects.com/en/3.0.x/config/#flask_sqlalchemy.config.SQLALCHEMY_DATABASE_URI].






	
SQLALCHEMY_ECHO

	Enable echoing of issued SQL queries. Useful for development and debugging.

Default: False






	
STYLE_GUIDE_ENABLED

	Enable BYCEPS’ style guide, available at /style_guide/ both in
admin mode and site mode.






	
TESTING

	Enable testing mode.

Only relevant when executing tests.

Default: False

Handled by Flask [https://github.com/pallets/flask].









            

          

      

      

    

  

    
      
          
            
  
Command-line Interface

BYCEPS comes with a command-line tool for some tasks.


Important

Before attempting to run any byceps command, make
sure that the virtual environment
is set up and activated.





	Command

	Description





	byceps create-database-tables

	Create database tables



	byceps create-superuser

	Create superuser



	byceps export-roles

	Export authorization roles



	byceps generate-secret-key

	Generate secret key



	byceps import-roles

	Import authorization roles



	byceps import-seats

	Import seats



	byceps import-users

	Import users



	byceps initialize-database

	Initialize database



	byceps shell

	Run interactive shell







Create Database Tables

byceps create-database-tables creates the tables that are required
to run BYCEPS in a relational database instance.

(venv)$ BYCEPS_CONFIG=../config/development.toml byceps create-database-tables
Creating database tables ... done.






Note

The database initialization command covers this command.





Import Authorization Roles

byceps import-roles imports authorization roles from a file in TOML
format into BYCEPS.

By default, an initial set of roles provided with BYCEPS is imported:

(venv)$ BYCEPS_CONFIG=../config/development.toml byceps import-roles
Importing roles ... done. Imported 35 roles, skipped 0 roles.





Optionally, the file to import from can be specified with the option
-f/--file:

(venv)$ BYCEPS_CONFIG=../config/development.toml byceps import-roles -f custom_roles.toml
Importing roles ... done. Imported 35 roles, skipped 0 roles.






Note

The database initialization command covers this command (except for the option to provide a
custom roles file).





Export Authorization Roles

byceps export-roles exports authorization roles in TOML format from
BYCEPS to standard output.

To export all roles into a TOML file, standard output is redirected
(>) to it:

(venv)$ BYCEPS_CONFIG=../config/development.toml byceps export-roles > exported-roles.toml







Initialize Database

byceps initialize-database prepares a relational database instance
for running BYCEPS.

It is a convenience command that includes the following steps (making it
unnecessary to call the covered commands separately):


	Create the database tables. (What Create Database Tables does.)


	Import authorization roles. (What Import Authorization Roles does.)


	Register the supported languages.




(venv)$ BYCEPS_CONFIG=../config/development.toml byceps initialize-database
Creating database tables ... done.
Importing roles ... done. Imported 35 roles, skipped 0 roles.
Adding language "en" ... done.
Adding language "de" ... done.







Create Superuser

byceps create-superuser creates a BYCEPS superuser.

This will:


	create a user account,


	initialize the account,


	assign all existing authorization roles to the account, and


	confirm the associated email address as valid (even though it might
not be).




This command is necessary to create the initial user account, which then
can be used to log in to the admin backend and to access all
administrative functionality.

The command can be run to create additional user accounts as well, but
they all will have superuser-like privileges in BYCEPS.

(venv)$ BYCEPS_CONFIG=../config/development.toml byceps create-superuser
Screen name: Flynn
Email address: flynn@flynns-arcade.net
Password:
Creating user "Flynn" ... done.
Enabling user "Flynn" ... done.
Assigning 35 roles to user "Flynn" ... done.






Note

This command will only assign the roles that exist in the
database. If no roles have been imported, none will be assigned.





Import Users

byceps import-users imports basic user accounts from a file in JSON
Lines [https://jsonlines.org/] format into BYCEPS.

This functionality exists to support migration from another system to
BYCEPS.

Currently supported fields:


	screen_name (required)


	email_address


	legacy_id


	first_name, last_name


	date_of_birth


	country, zip_code, city, street


	phone_number


	internal_comment




Example file (including a deliberately bad record):

{"screen_name": "imported01", "email_address": "imported01@example.test", "first_name": "Alice", "last_name": "Allison"}
{"bad": "data"}
{"screen_name": "imported02", "email_address": "imported02@example.test", "first_name": "Bob", "last_name": "Bobson"}
{"screen_name": "imported03"}





To import it:

(venv)$ BYCEPS_CONFIG=../config/development.toml byceps import-users example-users.jsonl
[line 1] Imported user imported01.
[line 2] Could not import user: 1 validation error for UserToImport
screen_name
  field required (type=value_error.missing)
[line 3] Imported user imported02.
[line 4] Imported user imported03.







Generate Secret Key

byceps generate-secret-key generates a secret key in a
cryptographically secure way.

A secret key is, among other things, required for login sessions.

(venv)$ byceps generate-secret-key
3ac1c416bfacb82918d56720d1c3104fd96e8b8d4fbee42343ae7512a9ced293






Attention

Do not use the above key (or any other key you copied
from anywhere). Generate your own secret key!




Attention

Do not use the same key for development and
production environments. Generate separate secret keys!





Import Seats

byceps import-seats imports seats from a file in JSON Lines [https://jsonlines.org/]
format into BYCEPS.

Currently supported fields:


	area_title (required)


	coord_x (required)


	coord_y (required)


	rotation


	category_title (required)


	label


	type_




Example file:

{"area_title": "Floor 3", "coord_x": 10, "coord_y": 10, "rotation": 0, "category_title": "Premium", "label": "Seat A-1"}
{"area_title": "Floor 3", "coord_x": 25, "coord_y": 10, "rotation": 0, "category_title": "Premium", "label": "Seat A-2"}





To import it:

(venv)$ BYCEPS_CONFIG=../config/development.toml byceps import-seats my-party-2023 example-seats.jsonl
[line 1] Imported seat (area="Floor 3", x=10, y=10, category="Premium").
[line 2] Imported seat (area="Floor 3", x=25, y=10, category="Premium").







Run Interactive Shell

The BYCEPS shell is an interactive Python command line prompt that
provides access to BYCEPS’ functionality as well as the persisted data.

This can be helpful to inspect and manipulate the application’s data by
using primarily the various services (from byceps.services) without
directly accessing the database (hopefully limiting the amount of
accidental damage).

(venv)$ BYCEPS_CONFIG=../config/development.toml byceps shell
Welcome to the interactive BYCEPS shell on Python 3.11.2!
>>>









            

          

      

      

    

  

    
      
          
            
  
Testing

BYCEPS comes with a quite extensive (but not all-encompassing) suite of
tests to be able to verify that at least a big part works as intended.

Running the tests is mostly useful for development of BYCEPS itself as
well as for customization.


Important

Before continuing, make sure that the virtual
environment is set up and activated.



In the activated virtual environment, first install the test
dependencies:

(venv)$ pip install -r requirements/test.txt





Then run the tests:

(venv)$ pytest





To abort on encountering the first failing test case:

(venv)$ pytest -x








            

          

      

      

    

  

    
      
          
            
  
License

BYCEPS is released under the 3-clause BSD license, also known as “New
BSD License”, “Modified BSD License”, and “Revised BSD License”.

The license applies both to all of BYCEPS’ source code as well as its
documentation.


License Text

Copyright (c) 2014-2024 Jochen Kupperschmidt

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:


	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.


	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.


	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.




THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.





            

          

      

      

    

  

    
      
          
            

Index



 D
 | J
 | L
 | M
 | P
 | R
 | S
 | T
 


D


  	
      	DEBUG (built-in variable)


  

  	
      	DEBUG_TOOLBAR_ENABLED (built-in variable)


  





J


  	
      	JOBS_ASYNC (built-in variable)


  





L


  	
      	LOCALE (built-in variable)


  





M


  	
      	MAIL_HOST (built-in variable)


      	MAIL_PASSWORD (built-in variable)


      	MAIL_PORT (built-in variable)


      	MAIL_STARTTLS (built-in variable)


  

  	
      	MAIL_SUPPRESS_SEND (built-in variable)


      	MAIL_USE_SSL (built-in variable)


      	MAIL_USERNAME (built-in variable)


      	METRICS_ENABLED (built-in variable)


  





P


  	
      	PATH_DATA (built-in variable)


  

  	
      	PROPAGATE_EXCEPTIONS (built-in variable)


  





R


  	
      	REDIS_URL (built-in variable)


  





S


  	
      	SECRET_KEY (built-in variable)


      	SESSION_COOKIE_SECURE (built-in variable)


      	SHOP_ORDER_EXPORT_TIMEZONE (built-in variable)


  

  	
      	SQLALCHEMY_DATABASE_URI (built-in variable)


      	SQLALCHEMY_ECHO (built-in variable)


      	STYLE_GUIDE_ENABLED (built-in variable)


  





T


  	
      	TESTING (built-in variable)


  







            

          

      

      

    

  _static/file.png





_static/minus.png





_static/plus.png





_images/structure.png
Seating






_images/structure1.png





_images/example_small.png
Categories

BO%Seel Yeg..2” Reg..2”






_images/scopes.png
global

brand





_images/widget.png
BYCEPS
© 2% Qusons





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to BYCEPS
        


        		
          Concepts
          
            		
              Authorization
              
                		
                  Structure
                


                		
                  Rationale
                


                		
                  Example
                


              


            


            		
              Blueprints
              
                		
                  Integration
                


              


            


            		
              Scopes
              
                		
                  Global
                


                		
                  Brand
                


                		
                  Party
                


                		
                  Site
                


              


            


            		
              Signals
              
                		
                  Example
                


              


            


          


        


        		
          Available Blueprints
          
            		
              Seating
              
                		
                  Structure
                


                		
                  Example: Small Party
                


                		
                  Example: Big Party
                


              


            


          


        


        		
          Installation (native)
          
            		
              Requirements
            


            		
              Install Debian Packages
            


            		
              Obtain BYCEPS
            


            		
              Set Up a Virtual Python Environment
            


            		
              Create BYCEPS Configuration File
              
                		
                  Set a Secret Key
                


                		
                  Specify SMTP Server
                


              


            


            		
              Prepare PostgreSQL
            


            		
              Populate Database
            


          


        


        		
          Installation (Docker Compose)
          
            		
              Obtain BYCEPS
            


            		
              Docker Preparation
            


            		
              Secret Key
            


            		
              Database
            


            		
              Initial User
            


            		
              Hostname-to-Application Routing
            


            		
              Start BYCEPS
            


          


        


        		
          Running BYCEPS
          
            		
              Admin Application
            


            		
              Site Application
            


            		
              Worker
            


          


        


        		
          Upgrading
          
            		
              Python Packages
            


          


        


        		
          Configuration
          
            		
              Supported Configuration Values
              
                		
                  DEBUG
                


                		
                  DEBUG_TOOLBAR_ENABLED
                


                		
                  JOBS_ASYNC
                


                		
                  LOCALE
                


                		
                  MAIL_HOST
                


                		
                  MAIL_PASSWORD
                


                		
                  MAIL_PORT
                


                		
                  MAIL_STARTTLS
                


                		
                  MAIL_SUPPRESS_SEND
                


                		
                  MAIL_USE_SSL
                


                		
                  MAIL_USERNAME
                


                		
                  METRICS_ENABLED
                


                		
                  PATH_DATA
                


                		
                  PROPAGATE_EXCEPTIONS
                


                		
                  REDIS_URL
                


                		
                  SECRET_KEY
                


                		
                  SESSION_COOKIE_SECURE
                


                		
                  SHOP_ORDER_EXPORT_TIMEZONE
                


                		
                  SQLALCHEMY_DATABASE_URI
                


                		
                  SQLALCHEMY_ECHO
                


                		
                  STYLE_GUIDE_ENABLED
                


                		
                  TESTING
                


              


            


          


        


        		
          Command-line Interface
          
            		
              Create Database Tables
            


            		
              Import Authorization Roles
            


            		
              Export Authorization Roles
            


            		
              Initialize Database
            


            		
              Create Superuser
            


            		
              Import Users
            


            		
              Generate Secret Key
            


            		
              Import Seats
            


            		
              Run Interactive Shell
            


          


        


        		
          Testing
        


        		
          License
          
            		
              License Text
            


          


        


      


    
  

_images/example.png
Permissions

grants permission
Create Topic

grants permission

grants permission Update Topic

grants permission
Hide Topic






_images/example_big.png
“200 % Ser Wge.2 "

00 % Ser W2 "

150 x Seat Premium

B % Ser. g2 ”

250 x Seat Premium

10 x Seat VIP

Categories

has category

has category: Regular






